skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Karimi Ghartemani, Masoud"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 22, 2026
  2. null (Ed.)
  3. At high penetration level of photovoltaic (PV) generators, their abrupt disturbances (caused by moving clouds) cause voltage and frequency perturbations and increase system losses. Meanwhile, the daily irradiation profile increases the slope in the net-load profile, for example, California duck curve, which imposes the challenge of quickly bringing on-line conventional generators in the early evening hours. Accordingly, this paper presents an approach to achieve two objectives: (1) address abrupt disturbances caused by PV generators, and (2) shape the net load profile. The approach is based on employing battery energy storage (BES) systems coupled with PV generators and equipped with proper controls. The proposed BES addresses these two issues by realizing flexible power ramp-up and ramp-down rates by the combined PV and BES. This paper presents the principles, modeling and control design aspects of the proposed system. A hybrid dc/ac study system is simulated and the effectiveness of the proposed BES in reducing the impacts of disturbances on both the dc and ac subsystems is verified. It is then shown that the proposed PV-BES modifies the daily load profile to mitigate the required challenge for quickly bringing on-line synchronous generators. 
    more » « less